
www.manaraa.com

Evaluation of High-Performance Computing SoftwareShirley Browne� Jack Dongarray Tom RowanzAbstractThe absence of unbiased and up to date compara-tive evaluations of high-performance computing soft-ware complicates a user's search for the appropriatesoftware package. The National HPCC Software Ex-change (NHSE) is attacking this problem using an ap-proach that includes independent evaluations of soft-ware, incorporation of author and user feedback intothe evaluations, and Web access to the evaluations.We are applying this approach to the Parallel ToolsLibrary (PTLIB), a new software repository for paral-lel systems software and tools, and HPC-Netlib, a highperformance branch of the Netlib mathematical soft-ware repository. Updating the evaluations with feed-back and making it available via the Web helps en-sure accuracy and timeliness, and using independentreviewers produces unbiased comparative evaluationsdi�cult to �nd elsewhere.1 IntroductionSelecting the appropriate software for a high-performance computing task is di�cult. Packages dif-fer in capabilities, features, and quality. Compara-tive evaluations, when they are available, usually comefrom the author of one of the packages. As a re-sult, comprehensive, independent, and unbiased eval-uations are not normally readily available, despite theobvious value such information would be to users.The National HPCC Software Exchange (NHSE)[1, 2] a Center for Research on Parallel Computation(CRPC) project for the collection, distribution, andevaluation of software and information produced by�Department of Computer Science, University of Tennessee,Knoxville, TN 37996-1301 (browne@cs.utk.edu)yDepartment of Computer Science, University of Tennessee,Knoxville, TN 37996-1301 and Mathematical Sciences Section,Oak Ridge National Laboratory, Oak Ridge, TN 37821-6367(dongarra@cs.utk.edu)zMathematical Sciences Section, Oak Ridge National Lab-oratory, Oak Ridge, TN 37821-6367 and Department of Com-puter Science, University of Tennessee, Knoxville, TN 37996-1301 (rowan@cs.utk.edu) Author to whom correspondenceshould be directed.

HPCC programs, is currently undertaking compara-tive evaluations of high-performance computing soft-ware with a view to satisfying this need. Our goalis to provide independent, unbiased comparative eval-uations of HPC software of wide applicability. Usersget easy access to side-by-side comparative evaluationsbased on consistent and objective criteria.Our current evaluation focus is on the Parallel ToolsLibrary (PTLIB), a new software repository for paral-lel systems software and tools, and HPC-Netlib, a highperformance branch of the Netlib [3, 4] mathematicalsoftware repository. We re�ne the NHSE high-levelevaluation framework to the domains in these two ar-eas and for each package in a particular domain, weapply a consistent set of criteria to assess various char-acteristics of the software. The evaluations, as well asauthor and user feedback, are made available via theWeb.Although the software evaluation part of NHSE ac-tivities is still in the early stages, many packages havealready been evaluated. However, the evaluations willbe on ongoing task. Our evaluation criteria and pro-cedures will evolve as the software pool grows and aswe gather comments from software authors and users.Section 2 describes our approach to evaluating high-performance computing software in more detail. Sec-tions 3 and 4 describe the evaluation criteria and cur-rent status for our evaluations of software in PTLIBand HPC-Netlib, and Section 5 summarizes our re-sults.2 ApproachOur approach di�ers in several respects from thetraditional presentations of comparative evaluations.� Comparative evaluations currently available aretypically done by an author of one of the pack-ages and can be subject to bias and possible in-consistencies across evaluations. By performingour evaluations as consistently and objectively aspossible, we should be able to avoid even the ap-pearance of bias.



www.manaraa.com

� We incorporate feedback from package authorsand users into our evaluation. This ensures thatthe evaluations are both fair and up to date.� Our evaluations are not static. As additionalinformation is gathered, either through our au-thor/user feedback mechanism or through en-hancements to our evaluation procedures, we willupdate the evaluations.� The collection of evaluations will be easily acces-sible at a centralized location via the Web. Userscan do side-by-side comparisons according to se-lected characteristics.We decided that users would bene�t most if we con-centrated our evaluations on the software with broad-est applicability. For this reason we have focused ourevaluations on parallel systems software and tools, andon mathematical software. Many packages selected forevaluation were drawn from the collection of softwarealready available through Netlib and the NHSE. Wealso solicited other promising packages not yet avail-able from our repositories.Our �rst step in designing a systematic, well-de�ned evaluation criteria was to use a high-level setof criteria that can be re�ned as needed to particu-lar domains. Our starting point for establishing thehigh-level set of criteria was to build on the softwarerequirements described in the Baseline DevelopmentEnvironment [5]. The criteria were appropriately tai-lored to a particular domain by those doing the evalu-ations and by others with expertise in the domain. Weexpect that the evaluation criteria for a given domainwill evolve over time as we take advantage of authorand user feedback, and as new evaluation resourcessuch as new tools and problem sets become available.The NHSE software evaluation process consists ofthe following steps.1. Reviewers and other domain experts re�ne thehigh-level evaluation criteria to this domain.2. We select software packages within this domainand assign each to an NHSE project memberknowledgeable in the �eld for evaluation.3. The reviewer evaluates the software package sys-tematically, typically using a well-de�ned eval-uation criteria checklist. Assessment of certaincriteria will necessarily be subjective. To facili-tate comparisons, the reviewer assigns a numer-ical score for each of those criteria based on hisjudgment of how well the criterion was met. As-sessment of criteria that can be easily measured

are typically reported directly as those measuredresults.4. We solicit feedback from the package author, giv-ing him the opportunity to make corrections, ad-ditions, or comments on the evaluation. In e�ectwe ask him to review our review, and we revisethe review to correct any errors or omissions.5. We make the review and the author's feedbackavailable via the Web.6. We add to the evaluation and author feedbackany comments users wish to submit through theNHSE Web pages.3 Evaluation of PTLIB SoftwareSo far our evaluation of PTLIB software has coveredparallel debuggers and performance analyzers. Wegive a detailed description of the evaluation criteriabelow. Note that it is has been re�ned and expandedto a level of detail to enable it to serve as an evaluationchecklist.Performance Includes accuracy, e�ciency, and scal-ability.Accuracy A performance monitoring tool is ac-curate if it does not cause too great a changein the behavior and timing of the programit is monitoring.E�ciency The software runs fast enough, inthat slow speed does not make it an inef-fective tool.Scalability A parallel tool is scalable if its over-head grows in a reasonable manner with in-creases in system and problem sizes. In somecases, linear growth may not be acceptable.Capabilities The tool has adequate functionality toe�ectively accomplish its intended tasks.Versatility Includes heterogeneity, interoperability,portability, and extensibilityHeterogeneity A heterogeneous tool can simul-taneously be invoked on and/or have itscomponents running on all platforms in aheterogeneous system.Interoperability A parallel tool is interopera-ble if its design is based on open interfacesand if it conforms to applicable standards.



www.manaraa.com

Portability A parallel tool is portable if it workson di�erent parallel platforms and if plat-form dependencies have been isolated to spe-ci�c parts of the code.Extensibility A performance analysis tool is ex-tensible if new analysis methods and viewscan be added easily.Maturity Includes robustness, level of support, andsize of user base.Robustness A parallel tool is robust if it han-dles error conditions without crashing andby reporting them and recovering from themappropriately.Level of support The timeliness and quality ofresponses to questions from users or the re-viewer should be adequate for typical pack-age use.Size of user base Indicators include the exis-tence of newsgroups or mailing lists for thepackage, and the number of downloads of thepackage.Ease of use The software has an understandableuser interface and is easy to use for a typicalNHSE user.The software characteristics described in the crite-ria above are most appropriately assessed by reviewerjudgment rather than by measured results. EachPTLIB software evaluation therefore contains a setof reviewer-assigned numerical scores indicating howwell the package met the criteria.Currently over 20 parallel debuggers and perfor-mance analyzers have been evaluated according tothe above criteria. These packages include AIMS,DAQV, LCB, MQM, NTV, Pablo, Pangaea, Para-dyn, ParaGraph, ParaVision, PGPVM, PVaniM, To-talView, Upshot, VAMPIR, VT, Xmdb, XMPI, andXPVM. We have solicited author feedback on theseevaluations, and the initial evaluations have beenupdated based on the feedback received. Web ac-cess to the evaluations is available through thePTLIB homepage at http://www.nhse.org/ptlib/. Seehttp://www.nhse.org/sw catalog/ for descriptions ofthe PTLIB software packages.4 Evaluation of HPC-Netlib SoftwareJust as we selected high-performance mathematicalsoftware for evaluation because of its broad applicabil-

ity for users, we have given priority to three mathe-matical software target domains for the same reason.� Linear algebra, especially sparse linear systemsolvers� Partial di�erential equations (PDEs)� OptimizationSeveral issues need to be considered when estab-lishing evaluation criteria for mathematical software.One observation is that, in contrast to the evaluationof parallel tools, the evaluation of mathematical soft-ware is inherently more quantitative. Assessing soft-ware by assigning scores, as was done for the evalua-tion of parallel tools, would be inappropriate for theevaluation of mathematical software.Another consideration is that mathematical soft-ware packages often have di�erent aims and di�erenttarget applications. We must ensure that systemati-cally and consistently checking the same criteria acrossall packages does not lead to comparing apples and or-anges.Another important observation is that some goalsof evaluation are inherently conicting. Satisfying awish list of ideal goals is impossible, and tradeo�s willbe necessary. Consider the following desirable and rea-sonable evaluation goals:� consistency in evaluation procedures because itpromotes objectivity and fairness in the evalua-tions, and� tailoring evaluation procedures to packages be-cause it promotes appropriate testing and optimaluse of evaluation resources.Now consider the following scenario. Package Ais well established, widely known to be thoroughlytested, and the package authors are known to the re-viewer. In contrast, everything about Package B isunknown to the reviewer. It clearly would be appro-priate to run Package B through a battery of varioussimple tests to ensure it meets at least some mini-mal standards. Running the same tests on PackageA might seem inappropriate because the package hasclearly survived far more rigorous testing. Runningthe tests does not appear to o�er much added valueto the user and does not appear to be the best use ofthe reviewer's time. However, not running the sametests on both packages could lead to a double standardor the appearance of a double standard. A satisfactoryresolution of this scenario will require some tradeo�sbetween the conicting goals.



www.manaraa.com

Our basic approach for meeting the conicting goalsis to test the packages on a relatively small set ofstandard test problems. The problem set will includeproblems with a wide range of di�culty levels, easyproblems any package should be able to solve and ex-tremely di�cult problems that will test the packages'limits. Problems will also be selected to test specialclaims made by package authors. Problem sets willnecessarily vary somewhat from package to package,but our aim is to have some small common core oftest problems across similar packages so that users willhave a basis for side-by-side comparison. Any othertests tailored to particular packages would be extraand optional.Evaluation results will be presented as a recon-�gurable package/problem Web-accessible table, witheach cell of the table containing the results of thatparticular test. We expect the problem set used inour evaluations to evolve over time. We plan to up-date the tests and the results table when the problemset changes to ensure a continuing common basis forpackage comparison.Characteristics of mathematical software can be di-vided into two categories - those characteristics thatcan be assessed by inspection of the code and docu-mentation and those that can only be assessed throughactual testing.Ideally the software testing examines the followingcharacteristics.Correctness The code works correctly on the in-tended problems.E�ciency The code is e�cient with respect to bothspeed and storage.Stability The code is stable, performing as e�cientlyand as accurately as the problem's conditioningallows.Robustness The code handles error conditions rea-sonably. The ability to estimate a problem's con-dition, or otherwise providing a check on the com-puted answer's reliability, is also desirable.Full examination of each characteristic for each pack-age is clearly unrealistic. In addition, absolute quan-titative assessments of the characteristics may meanlittle to a typical package user. Our approach of doingside-by-side comparisons on common standard prob-lems provides relative assessments that are both morepractical to obtain and more helpful to the user.For testing sparse linear system solvers, several use-ful resources are available. The Harwell/Boeing [6]

collection of sparse test matrices will be the sourcefor many of our test problems. SPARSKIT [7] alsocontains a useful collection of test problems and inaddition provides matrix generation and matrix for-mat conversion utilities. The Harwell/Boeing andSPARSKIT collections are available through the Ma-trix Market [8].The evaluation characteristics of sparse solvers thatcan be assessed largely from inspection of the code andits documentation include the following.Capabilities Includes methods, formatsMethods Identify which methods and precondi-tioners are used in the package.Formats Identify which matrix formats are sup-ported. Packages that use non-standard ma-trix formats may be harder to test and touse, and will tend to have a relatively smallbase of users.Portability Includes standards, architecturesStandards Identify which standards (e.g. MPI,BLAS) are used.Architectures Identify on which architecturesthe packages has been tested and is sup-ported.Versatility Includes methods, interfacesMethods Identify the extent to which a user candesign or specify the method or precondi-tioner to be used.Interfaces Identify how well the package inter-faces with other packages, and whether ithas multi-language support.Ease of use Identify adequacy of documentation, ex-amples, and support.Our current emphasis in the HPC-Netlib evalua-tion is on sparse linear system solvers, although manyof the sparse packages also fall into the PDE cate-gory. We are currently evaluating the iterative pack-ages Aztec, PETSc, and PIM. We also plan to evalu-ate the iterative packages BlockSolve95, BPKIT, Ele-gant, IML++, ITPACK, LASPack, PARPRE, PCG,P-SPARSLIB, and Templates, and the direct pack-ages CAPSS, SPARSE, SuperLU, and UMFPACK.The evaluations are available through the HPC-Netlibhomepage at http://www.nhse.org/hpc-netlib/. Seehttp://www.nhse.org/sw catalog/ for descriptions ofthe HPC-Netlib software packages.



www.manaraa.com

5 SummaryEvaluating software accurately and in a way thatis both useful to users and fair to authors is di�cultand time consuming. However, there are many bene-�ts to users from such an e�ort. Some of these are adirect consequence of our approach. The evaluationsare easily accessible via the Web. Our mechanism ofincorporating feedback from authors and users helpsensure accuracy in the evaluation and keeps it up todate. Independent reviewers systematically evaluatingsoftware against well thought out criteria will producean objective, unbiased comparative evaluation di�cultto �nd elsewhere.AcknowledgmentsThis project has bene�ted greatly from the e�ortsof many people. We thank Vasilios Alexiades, ChrisHastings, Christian Halloy, and Kevin London forevaluating software and for helping to establish theevaluation criteria, Paul McMahan for his invaluablesystems support, and Ron Boisvert and Esmond Ngfor many valuable discussions.References[1] Shirley Browne, Jack Dongarra, Stan Green,Keith Moore, Tom Rowan, Reed Wade, Geo�reyFox, Ken Hawick, Ken Kennedy, Jim Pool, RickStevens, Bob Olsen, and Terry Disz, \The Na-tional HPCC Software Exchange", IEEE Compu-tational Science and Engineering, vol. 2, pp. 62{69,1995, Project Web page at http://www.nhse.org/.[2] Shirley Browne, Henri Casanova, and Jack Don-garra, \Providing access to high performancecomputing technologies", in Proceedings of thePARA96 Workshop on Applied Parallel Comput-ing in Industrial Problems and Optimization, Lyn-gby, Denmark, August 1996.[3] J. Dongarra and E. Grosse, \Distributionof mathematical software via electronic mail",Communications of the ACM, vol. 30, pp.403{407, May 1987, Project Web page athttp://www.netlib.org/.[4] Shirley Browne, Jack Dongarra, Eric Grosse, andTom Rowan, \The Netlib mathematical soft-ware repository", D-Lib Magazine, Sep. 1995,http://www.dlib.org/magazine.html.

[5] C. M. Pancake, \Speci�cation of baseline develop-ment environment", http://www.cs.orst.edu/~pancake/SSTguidelines/baseline.html.[6] I. S. Du�, R. G. Grimes, and J. G. Lewis, \Sparsematrix test problems", ACM Transactions onMathematical Software, vol. 15, pp. 1{14, 1989.[7] Y. Saad, \SPARSKIT: A basic tool kit for sparsematrix computations", Technical Report 90-20,Research Institute for Advanced Computer Sci-ence, NASA Ames Research Center, Mo�et Field,CA, 1990.[8] R. F. Boisvert, R. Pozo, K. Remington, R. F. Bar-rett, and J. J. Dongarra, \Matrix Market: Aweb resource for test matrix collections", in R.F.Boisvert, editor, The Quality of Numerical Soft-ware: Assessment and Enhancement. Chapmanand Hall, London, 1997.


